About me I received my BSc in Engineering Physics at Colorado School of Mines in Golden (1975), then moved to New York to do graduate work at SUNY-Stony Brook, where I received a Ph.D. in physics in 1980. I did post-doctoral research at Princeton University in New Jersey (1980-83), NORDITA in Copenhagen and Helsinki University of Technology (1983-84), then joined the Princeton physics faculty for four years (1983-1987). Since 1987 I have been a professor of physics at Northwestern University in Evanston, Illinois. [Curriculum Vitae]
What I do Research: I study the physical world by combining mathematical analysis and observation (generally with the help of experimentally inclined colleagues and students). I try to formulate and apply concepts and principles (physical laws) to relate observations of physical phenomena, such as superconductivity, to fundamental properties of matter and radiation. The laws of physics (e.g. quantum mechanics) are expressed in mathematical equations, so in practice I try to formulate physical questions as mathematical problems.
Teaching: I teach physics - both the fundamentals as well as developments in current research. For me, teaching and research are entangled.
My field Theoretical Physics. I started research in the nuclear theory group at Stony Brook investigating matter under conditions thought to exist in the interiors of cold, dense stars called neutron stars. My current research is in the field of condensed matter physics. Theoretical condensed matter research involves the discovery of new concepts related to the collective behavior of enormous numbers of atomic constituents, combined with the application of statistical mechanics and quantum theory to describe the behavior of macroscopic matter. This behavior is clearly revealed at low temperatures, or in the presence of strong electromagnetic or acoustic radiation fields where quantum effects are important. Matter under such conditions is described by quantum field theory. I conduct theoretical studies of matter in which quantum effects are manifest in the observable properties of matter. [More about Condensed Matter Physics]
Publications
Archive
Recent
Highlights
Reviews
Google Scholar
arXiv
Research Gate
Orchid
Frontiers
Mendeley

Teaching
Quantum Mechanics
Applied Physics 501
Research
News
Talks
People
Schedule
CMT@Northwestern
CMT Group
CMT Events
CMT Overview
CMP Research
CMP Seminar
Links
Helium Calculator
arXiv.org
APS
NJP
JLTP
Frontiers
Maps
Northwestern Graduate Courses Department Directory Ph Directory Events Calendar