Sound Propagation and Transport Properties of Liquid 3He in Aerogel

D. Rainer1 and J. A. Sauls2

1Physikalisches Institut, Universität Bayreuth, Bayreuth, Germany

2Department of Physics & Astronomy, Northwestern University, Evanston, Illinois

(Received August 31, 1997)

Abstract
Superfluid 3He confined in aerogel offers a unique chance to study the effects of a short mean free path on the properties of a well defined superfluid Fermi liquid with anisotropic pairing. Transport coefficients and collective excitations, e.g. longitudinal sound, are expected to react sensitively to a short mean free path and to offer the possibility for testing recently developed models for quasiparticle scattering at aerogel strands. Sound experiments, together with a theoretical analysis based on Fermi liquid theory for systems with short mean free paths, should give valuable insights into the interaction between superfluid 3He and aerogel.

A model for liquid 3He in aerogel based on a random distribution of short-ranged potentials acting on 3He quasiparticles has been shown to account semi-quantitatively for the reduction of the transition temperature, T_{c}, and the suppression of the superfluid density, $\rho_{s}(T)$. Although the order parameter for 3He in aerogel is not firmly identified, measurements of the magnetization indicate that the low pressure phase is an ESP state. A transverse NMR shift is observed and is roughly consistent with that of an axial state even though the B-phase is stable in pure 3He at these pressures. The addition of a small concentration of 4He, which coats the aerogel strands, induces a suppression of the magnetization for $T < T_{c}^{\text{aerogel}}$, indicative of a non-ESP state like the BW phase. Thus, the stability of the superfluid state of 3He in aerogel is quite sensitive to the detailed interaction between 3He and the aerogel strands. Calculations of the free energy for 3He in aerogel which include anisotropic and magnetic scattering, and the effects of orientational correlations of the aerogel strands, confirm the sensitivity of the superfluid phases to the interaction between 3He and the aerogel.1,3

The high porosity of the aerogel implies that the silica structure does not significantly modify the bulk properties of normal 3He. The dominant effect of the aerogel structure is to scatter 3He quasiparticles moving at the
bulk Fermi velocity. If the coherence length, $\xi_0 = \hbar v_f / 2\pi T_c$, is sufficiently long compared to the average distance between scattering centers then a reasonable starting point is to treat the aerogel as a homogenous scattering medium (HSM) described by a mean-free path ℓ. In this article we discuss the effects of a short mean free path on some of the transport properties of liquid 3He. The calculations presented below for sound propagation assume the BW phase is stable; however, the propagation and damping of low-frequency sound are expected to be qualitatively similar for other phases.

\begin{figure}[h]
\centering
\includegraphics[width=\textwidth]{fig1.png}
\caption{p-T phase diagram vs. ℓ. The geometric mean-free path is estimated to be 1750 Å. The data is from Ref. 4.}
\end{figure}

The superfluid transition temperature for 3He in aerogel is suppressed by quasiparticle scattering off the aerogel structure. In the HSM model the suppression of T_c is given by the Abrikosov-Gorkov formula,

$$\ln\left(\frac{T_0}{T_c}\right) = \Psi\left(\frac{1}{2} + \frac{1}{2} \frac{\xi_0 T_c}{\ell}\right) - \Psi\left(\frac{1}{2}\right),$$

with the pair-breaking parameter given by ξ_0/ℓ. Figure 1 shows the calculated aerogel transition temperature for several values of the mean-free path. The pressure dependence of the calculated phase diagram is determined by the pressure dependence of the bulk transition temperature and the Fermi velocity via $\xi_0 = \hbar v_f / 2\pi T_c$. The experimental data for $T_c(p)$ is from Matsumoto, et al.\cite{4} for an aerogel with $\approx 98\%$ open volume. For this porosity the typical diameter of the aerogel strands is $d \simeq 30$ Å and the mean distance between strands is $D \simeq 325$ Å, which should be compared with the bulk coherence length $\xi_0 \simeq 700$ Å at $p = 1$ bar. The geometric mean-free path of the
sound propagation and transport properties of liquid 3He in aerogel

...determined from the surface to volume ratio, $S \approx 2.6 \times 10^5$ cm$^{-1}$, is $\ell_{\text{geom}} = \frac{3r^2}{k} S \approx 1750$ Å. The calculations show a mean-free-path of this order gives good agreement with the phase diagram at low temperatures and low pressures, i.e., for $\xi(p) = \hbar v_f/2\pi k_B T_c(p, \ell) > D \approx 325$ Å, which corresponds to pressures $p \lesssim 15$ bar. Also note that the mean-field phase diagram shows a zero-temperature phase transition as a function of pressure determined by $\xi_0(p_c) = 0.28 \ell$.

The transport properties of 3He should also be strongly affected by scattering from the aerogel. In the normal state the quasiparticle distribution function, $\phi(p, R; \epsilon, t)$, satisfies the Boltzmann-Landau transport equation,

$$\frac{\partial \phi}{\partial t} + v_f \cdot \nabla \phi + \left(\frac{\partial \phi_0}{\partial \epsilon} \right) \frac{\partial E}{\partial t} = I[\phi],$$

where E is the effective potential acting on the quasiparticles and $I[\phi]$ is the collision integral. The effective potential consists of the external driving potentials and the internal potentials resulting from quasiparticle interactions. In pure liquid 3He the quasiparticle lifetime is determined by inelastic collisions between quasiparticles and is of order $\tau_{\text{in}} \approx 1\mu s$ at $p = 15$ bar. However, in aerogel the mean time between scatterings by the aerogel is $\tau_{\text{cl}} = \ell/v_f \approx 4$ ns at the same pressure. Thus, for temperatures below $T_\star \approx 16$ mK the collision rate is dominated by quasiparticle scattering by the aerogel: $I_{\text{el}} = -\frac{1}{\tau_{\text{cl}}} (\phi - \langle \phi \rangle_{\psi})$. This leads to strong reduction in the thermal conductivity and viscosity, and to an increase in the damping of hydrodynamic sound. The static transport coefficients exhibit cross-over behavior dictated by the scattering rate; the thermal conductivity and shear viscosity scale as

$$\kappa = \frac{1}{3} C_v v_f^2 \tau \sim \begin{cases} \frac{1}{T} & T \gtrsim T_\star, \\ \frac{1}{T} \frac{N_f v_f^2}{\epsilon^2} \tau & T < T_\star, \end{cases} \quad \eta = \frac{1}{15} N_f v_f^2 \frac{2}{\epsilon^2} \tau \sim \begin{cases} \frac{1}{T^2} \text{const} & T > T_\star, \\ \frac{1}{T^2} & T < T_\star. \end{cases}$$

above and below T_\star. Recent speculations that the low-temperature phase of 3He in aerogel for $p < p_{c\tau}$ is not described by Fermi-liquid theory4,5 can be tested by measuring these transport coefficients.

At low frequencies a compressible aerogel will move nearly in phase with the 3He density and longitudinal current mode; sound propagates but it is damped by the viscous coupling of the 3He to the aerogel, $\alpha_1 = \frac{\rho v_f^2}{\rho c_1} \eta$, where c_1 is the hydrodynamical sound velocity and ρ is the mass density of 3He. The viscous damping of hydrodynamic sound saturates for $T < T^\ast$ at $\alpha_1/q \approx \frac{2}{3} \omega \tau_{\text{cl}}/(1 + F_0^2)$. At higher frequencies the impedance mismatch between 3He and the aerogel sound mode leads to an increasingly out-of-phase motion of 3He excitations and aerogel. Hydrodynamic sound may become
overdamped and reemerge as a diffusive mode. The frequency at which the cross-over from damped hydrodynamic sound to an overdamped diffusive mode occurs depends on the elastic compliance of the aerogel and the microscopic details of the coupling between 3He and the aerogel strands. Here we assume the frequency is above this cross-over, in which case the hydrodynamic mode is an overdamped diffusive mode, $\omega = -iD_s q^2$, where $D_s = c_1^2 \tau$ is the acoustic diffusion constant with $1/\tau = (1 + F_3^q/3)/\tau_{cl}$. At still higher frequencies, $\omega \tau \gg 1$, zero sound can propagate, albeit with relatively high attenuation, $\alpha_0 \approx 1/c_0 \tau \approx 10^4 \text{ cm}^{-1}$ at $p = 10 \text{ bar}$. The regime for propagating zero sound is also pushed to higher frequencies, $\omega/2\pi > v_f/2\pi \ell \approx 42 \text{ MHz}$ at $p = 10 \text{ bar}$.

![Graph showing suppression of $\rho_s(T)$ by scattering at $p = 10 \text{ bar}$ with $F_3^q = 8.6$. Results in Born approximation are shown for bulk 3He-B and mean-free paths $\ell = 1600$ to 3000 Å. The inset shows the 4th sound velocity for the same values of the mean-free path.](image)

Fig. 2 - Suppression of $\rho_s(T)$ by scattering at $p = 10 \text{ bar}$ with $F_3^q = 8.6$. Results in Born approximation are shown for bulk 3He-B and mean-free paths $\ell = 1600$ to 3000 Å. The inset shows the 4th sound velocity for the same values of the mean-free path.

The collective mode spectrum of superfluid 3He in aerogel is also expected to show significant changes compared to bulk 3He.6-8 A typical example is low frequency sound in superfluid 3He ($\omega \ll \Delta/\hbar$). In bulk 3He one has collisionless zero sound and hydrodynamic first sound with nearly the same velocities, $c_0^2 \approx c_1^2 = \frac{1}{3}\left(1 + F_3^q\right)(1 + \frac{1}{3}F_3^q)v_f^2$, and small damping by quasiparticle-quasiparticle scattering (for reviews on sound and collective modes in 3He see e.g. Refs. 9-11). In aerogel, on the other hand, one expects a behavior which is similar to sound in 3He confined to small channels.12 Sound will be weakly damped for $q\ell \gg 1$, ceases to be a well defined mode for $q\ell \approx 1$, and reappears for $q\ell \ll 1$ as fourth sound with a temperature
Sound Propagation and Transport Properties of Liquid 3He in Aerogel

dependent velocity, $c_4 \simeq \sqrt{\rho_s(T)/\rho c_1}$. Fig. 2 shows the effects of elastic scattering on the superfluid density. Note the reduction in ρ_s/ρ at $T = 0$. For a mean-free path of $\ell = 1800 \text{Å}$ less than 50% of the 3He mass density contributes to $\rho_s(T = 0)$. The inset shows the fourth sound velocity neglecting damping.

\[\text{Fig. 3 - Spectral function of the density response } \chi(\mathbf{q}, \omega) \text{ for } q\ell = 0.001 \ldots 10. \text{ The results are for } T/T_c = 0.8, 1/\tau_c T_c = 0.01, F_0^s = 50 \text{ and } F_1^s = 8.6; \text{ the corresponding zero sound mode is at } \omega/v_f q = c_0/v_f = 8.1. \]

Measurements of sound propagation in 3He-aerogel should provide a sensitive test of the HSM model. We study the spectrum of longitudinal sound in this model by calculating the linear response of the 3He density, $\rho(\mathbf{q}; \omega)$, to a driving force of wavevector \mathbf{q} and frequency ω. Our driving force will be a scalar field described by a potential, $\delta U_{\text{ext}}(\mathbf{q}; \omega)$, which couples to the 3He density. More realistic “experimental driving forces” require more elaborate calculations, which are not called for given the present experimental status. The calculation follows the quasiclassical version of the method of Betbeder-Matibet and Nozières. In the low frequency limit one has to solve Boltzmann-Landau transport equations for the branches of particle-like and hole-like excitations with distribution functions $\delta \phi_{B_1,B_2}(\mathbf{p}, \mathbf{R}; e, t)$. We keep the dominant Landau parameters, F_0^s and F_1^s, and obtain an effective scalar potential, $\delta \tilde{u}(\mathbf{q}; \omega)$, and longitudinal vector potential, $\delta \tilde{u}(\mathbf{q}; \omega) = \mathbf{v}_f \cdot \delta \mathbf{A}(\mathbf{q}; \omega)$. The collision terms in the HMS model have the form, $I_{B_1,B_2} = -\frac{1}{\tau_0} \left(\delta \phi_{B_1,B_2} - \left< \delta \phi_{B_1,B_2} \right>_{\text{FS}} \right)$, where
\[\tau(\epsilon) = \ell/v(\epsilon), \text{ and } v(\epsilon) = v_f \sqrt{\epsilon^2 - |\Delta|^2/\epsilon} \] is the energy dependent quasiparticle velocity in the superfluid state. In the low frequency limit the transport equations have to be supplemented by Landau’s self-consistency equations for the effective potentials, \(\delta \tilde{u} \) and \(\delta \tilde{a} \), and the particle conservation law, \(\dot{\rho} + \nabla \cdot \mathbf{j} = 0 \). In this limit we can ignore the less important self-consistency equation for the amplitude, \(\delta |\Delta| \), of the order parameter. The five coupled linear equations for the distribution functions, the effective potentials, and the phase, \(\delta \Psi(q;\omega) \), of the order parameter can be solved, and will be described elsewhere.

![Graph](image.png)

Fig. 4 - Temperature dependence of the imaginary and real (inset) parts of the spectral function \(\chi(q,\omega) \) for \(T/T_c = 0.25 \ldots 0.85 \). The results are shown for \(q\ell = 0.1, \ qv_f = 0.001 T_c, \ F_0^s = 50 \) and \(F_1^s = 8.6 \).

The calculated crossover from weakly damped zero sound to weakly damped fourth sound is shown in Fig. 3. We display the frequency dependent spectral function, \(-\Im \chi(q,\omega) \), for various wavelengths at fixed temperature and elastic scattering time. One can see clearly the transition from zero sound at \(v_f q \gg 1/\tau_{el} \) to fourth sound at \(v_f q \ll 1/\tau_{el} \). Fig. 4 shows the real and imaginary parts of the response function, \(\chi(q,\omega) \), at various temperatures and fixed \(\tau_{el} \). Because of the short mean free path, \(q\ell = 0.1 \), the zero sound resonance with wavevector \(q \) is overdamped in the normal state and just below \(T_c \). The damping decreases exponentially in the superfluid state for \(T \ll \Delta \) because of the freezing out of thermally excited quasiparticles; and, as can be seen from Fig. 4, a well defined zero sound mode develops.
We thank the Alexander von Humboldt-Stiftung, the Deutsche Forschungsgemeinschaft (SFB279) and the STC for Superconductivity (NSF 91-20000) for their support.

REFERENCES